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Abstract

Background and objective: Machine learning (ML) is a subset of artificial intelligence
that uses data to build algorithms to predict specific outcomes. Few ML studies have
examined percutaneous nephrolithotomy (PCNL) outcomes. Our objective was to build,
streamline, temporally validate, and use ML models for prediction of PCNL outcomes (in-
tensive care admission, postoperative infection, transfusion, adjuvant treatment, postop-
erative complications, visceral injury, and stone-free status at follow-up) using a
comprehensive national database (British Association of Urological Surgeons PCNL).
Methods: This was anML study using data from a prospective national database. Extreme
gradient boosting (XGB), deep neural network (DNN), and logistic regression (LR) models
were built for each outcome of interest using complete cases only, imputed, and oversam-
pled and imputed/oversampled data sets. All validation was performed with complete
cases only. Temporal validationwas performedwith 2019 data only. A second round used
a composite of the most important 11 variables in eachmodel to build the final model for
inclusion in the shiny application. We report statistics for prognostic accuracy.
Key findings and limitations: The database contains 12 810 patients. The final variables
included were age, Charlson comorbidity index, preoperative haemoglobin, Guy’s stone
score, stone location, size of outer sheath, preoperative midstream urine result, primary
puncture site, preoperative dimercapto-succinic acid scan, stone size, and image guid-
ance (https://endourology.shinyapps.io/PCNL_Demographics/). The areas under the
receiver operating characteristic curve was >0.6 in all cases.
sevier B.V. on behalf of European Association of Urology. This is an open access article
mmons.org/licenses/by-nc-nd/4.0/).
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Conclusions and clinical implications: This is the largest ML study on PCNL outcomes to
date. The models are temporally valid and therefore can be implemented in clinical prac-
tice for patient-specific risk profiling. Further work will be conducted to externally val-
idate the models.
Patient summary: We applied artificial intelligence to data for patients who underwent a
keyhole surgery to remove kidney stones and developed a model to predict outcomes for
this procedure. Doctors could use this tool to advise patients about their risk of compli-
cations and the outcomes they can expect after this surgery.

� 2024 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Kidney stone disease is a prevalent and costly condition [1].
Large kidney stones are often treated with percutaneous
nephrolithotomy (PCNL) [2]. In addition to the planned out-
come of stone removal (ie, stone-free status), PCNL has a
number of potential complications, including a need for
blood transfusion, postoperative infection, and visceral
injury [3]. Several scoring systems have been built in
attempts to predict outcomes for individual patients [4].
More recently, (supervised) machine learning (ML) tech-
niques have been used to build models for predicting out-
comes of PCNL [5–7]. In comparison to statistical
methods, ML can handle highly nonlinear relationships by
allowing a computer to predict outcomes on the basis of
algorithmic rather than statistical methods (eg, logistic
regression). This provides superior accuracy in comparison
to traditional statistical methods, especially for rare out-
comes. However, the models generated to produce these
results can be highly complex and in effect a ‘‘black box’’.
To try and demonstrate which variables contribute to a par-
ticular outcome, metrics such as Shapley weighting are used
to ‘‘explain’’ individual ML predictions [8].

To date, the largest PCNL data set used for ML involved
134 cases [6] and only four outcomes have been described:
stone-free status, need for adjuvant treatment, need for
stent insertion, and need for blood transfusion. Aminsharifi
et al [6] demonstrated that ML using support vector machi-
nes had superior accuracy to traditional nomograms (Guy’s
stone score and the Clinical Research Office of the Endouro-
logical Society [CROES] PCNL nomogram).

None of the currently published models have been vali-
dated. There are three ways to perform validation, from
which prognostic accuracy statistics are generated: internal,
external, and temporal validation. Internal validation (often
termed the ‘‘test’’ set) simply represents a small subset
(usually 20–30%) of the total dataset. External validation
uses an external data set. Temporal validation is a form of
external validation for which new data are collected from
the same source as the training set but in a different (ideally
later) time period [9].

To facilitate better personalised prediction of postopera-
tive outcomes, we used a large national database to develop
ML models for prediction of seven important PCNL out-
comes: stone-free status, need for transfusion, need for
intensive care, visceral injury, need for adjuvant treatment,
postoperative infection, and postoperative complications.
After temporal validation, the best-performing models were
used in a web-based application to facilitate individualised
predictions.

2. Patients and methods

2.1. Methodology reporting

This study is reported in accordance with the TRIPOD checklist [10],

which is included in the Supplementary material.

2.2. Patients and data set

We used data from the British Association of Urological Surgeons (BAUS)

PCNL audit, for which the data collection methods have been published

[11], but we report them in brief here. Through advertisements at

national urological meetings, all surgeons undertaking PCNL in the UK

were invited to submit data to the registry using an online interface.

An individual record that contained both a unique patient identifier

and National Health Service (NHS) number was created for each PCNL

procedure. Data were collected between 2014 and 2019 and are detailed

below.

2.3. Predictors and outcomes

We built initial models using all 43 preoperative predictive variables

within the data set: age; body mass index; preoperative haemoglobin

(in g/l); Charlson comorbidity index (score 0–10); age-related Charlson

comorbidity index (score 0–11) [12]; number of tracts planned; number

of tracts performed; sex; side of stones; previous treatment for urinary

tract infection; preoperative antibiotic course; preoperative urine culture;

preoperative urine culture result; primary preoperative imaging; sec-

ondary preoperative imaging; preoperative dimercapto-succinic acid

(DMSA) renogram; catheterisation status; preoperative estimated

glomerular filtration rate; prophylactic antibiotics on induction; grade of

main operating surgeon; type of anaesthesia; interventional radiologist

availability; secondary re-look nephroscopy; stone dimensions (in cm);

number of stones; index stone location; other stone location(s); Guy’s

stone score [13]; maximum Hounsfield units for the index stone on com-

puted tomography (CT) of the kidney, ureter, and bladder; pre-existing

nephrostomy tube status; specialty and grade of practitioner performing

puncture; puncture site; image guidance for renal puncture; patient posi-

tion; anatomic placement of tract; size of Amplatz sheath (Fr); type of dila-

tors used; predicted difficulty; accessory procedures; postoperative

nephrostomy; and primary and secondary stone extraction techniques.

We examined nine outcomes: visceral injury; need for transfusion;

postoperative infection; postoperative complications; need for higher

care (high dependency unit [HDU] or intensive therapy unit [ITU]);

immediate clearance on intraoperative fluoroscopy; clearance on imme-

diate postoperative imaging (clinician-chosen); stone-free status at

http://creativecommons.org/licenses/by-nc-nd/4.0/
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follow-up (first outpatient review using radiography, ultrasonography,

or CT according to local practice); and need for adjuvant treatment.

The following outcomes were also available but were not examined

owing to their lack of clinical utility: Clavien-Dindo classification of com-

plications [14], postoperative stay, and survival. However, summary

statistics for these outcomes are reported for contexualisation of the

database.

Following initial model building and testing, we aggregated variable

importance (so the online application would be as user friendly as pos-

sible, ie, maximal outputs for minimal inputs) for each model and

selected the top 12 most important variables to build further models

(testing the top 10, 11, and 12 most important variables).
2.4. Sample size calculation

Sample size was calculated for the least likely event, that is, the event for

which the largest number of patients was needed (vascular injury neces-

sitating nephrectomy, �0.1%). Using a 0.1% population proportion, c-

statistic of 0.8 (idealised), maximum number of parameters (n=30) and

shrinkage of 0.5, a sample size of n = 5609 was calculated [15,16] [see

statistical code section 2.11].
2.5. Missing data

For each outcome, cases with missing data for that outcome were

excluded. We then built four models for each outcome: complete cases

only (further removal of cases with missing data in any column); multi-

ple imputation (using the mice [17] package; no collinearity detected

before this step); oversampled (using the ROSE [18] package); and

imputed (multiple) and oversampled. The test sets included only com-

plete cases and were neither imputed nor oversampled.
2.6. Model selection

We used logistic regression (traditional statistical modelling technique),

extreme gradient boosting (XGB) [19], and deep neural networks (DNNs)

for model building. Explanations of these models are detailed below.
Original cohort
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Fig. 1 – Flow diagram of the process steps from collection of raw data to final mo
extreme gradient boosting; Log Reg = logistic regression; DNN = deep neural ne
2.6.1. Gradient boosting machine

Gradient boosting machine [20] and one of its variants, gradient tree

boosting (GTB), is an ensemble procedure that iteratively fits simple sta-

tistical models to the data. GTB uses classification trees as simple statis-

tical models to model the data. Iteratively, GTB evaluates how well the

current model performs, adds another tree to the errors made previ-

ously, and then updates the model by adding the regression tree to the

ensemble. We use XGB [21], one of the most popular implementations

of GTB, which allows for fast computation.

2.6.2. Artificial neural network

Inspired by neurons of the human brain [22], an artificial neural network

(ANN) is a nonlinear aggregate extension of simpler regression methods.

The network transforms all the input information from the predictors, in

both a linear and nonlinear fashion, and passes the result to the next

layer. This is repeated until an output layer is reached that forms the pre-

diction of the network. ANNs with more than one hidden layer are ter-

med DNNs [23].

2.7. Model building

All models were built in R version 4.1.2 (R Foundation for Statistical

Computing, Vienna, Austria) [24] using base R, caret [25], and keras

[26]. Initial models were built using XGB only to screen for poorly pre-

dicted outcomes, with final model building using XGB, logistic regres-

sion, and DNN.

2.8. Validation

Data sets were randomly split into a training set (70% of the total) and a

test set (30%) using sample in R. The test set (complete cases only) was

used to internally validate the models for each outcome in the initial

model-building round (Fig. 1). For the final round, the data set was seg-

regated by year of data collection (training set, 2014–2018; temporal

validation, 2019).

A hyperparameter tuning strategy was designed to optimise the area

under the receiver operating characteristic (ROC) curve (AUC). Hyperpa-

rameters for the final models are detailed in Supplementary Table 1.
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2.9. Statistical analysis

Summary statistics are provided for the overall data set. We report prog-

nostic accuracy statistics following internal and temporal validation for

each model: overall accuracy with 95% confidence interval, sensitivity,

specificity, and AUC. Results for the negative predictive value and posi-

tive predictive value are available in the Supplementary material. ROC

curves for all models and calibration curves were generated using the

MLeval [27], caret [25], pROC, and ggplot2 [28] packages.

2.10. Model selection and use

Models that had high accuracy and AUC (ideally �0.7) were used online

via the shiny package [29], along with a dashboard for data exploration.

However, if a particular model achieved high accuracy/AUC but was

unable to differentiate between outcomes, then sensitivity and speci-

ficity were prioritised. Model explainers were built to display Shapley

weights using the shapr package. The final model is available online at

https://endourology.shinyapps.io/PCNL_Demographics/.

2.11. Code availability

The code is available at https://github.com/rg2u17/PCNL_all_outcomes.

3. Results

3.1. Demographics

The overall data set (n = 12 810), included 5914 women
(46%). The mean age was 55.4 yr (±18.6), median body mass
index was 28.45 kg/m2 (interquartile range [IQR] 25.0–
33.0), and the median Charlson comorbidity index was 0
(IQR 0–1, range 0–15). A total of 3737 patients (29.2%)
had a previous urinary tract infection, 4008 (41.4%) had
received preprocedural antibiotics (not including antibiotics
Fig. 2 – Receiver operating characteristic curves for the final models (A) after tem
unit; ITU = intensive therapy unit.
at induction, which all patients received), and 10 436
(81.5%) had a preprocedural urine culture.

In the overall data set, outcomes were as follows (per-
centages calculated based on available outcome data, ie,
missing data excluded): 5999 patients (70%) had stone
clearance on immediate postoperative imaging, 21 (0.18%)
had a visceral injury, 17 (0.16%) died, 246 (2%) had a postop-
erative transfusion, 1329 (12%) had a postoperative infec-
tion, 590 (5%) required ITU/HDU admission, 2191 (74%)
were stone-free at follow-up, and 468 (16%) needed adju-
vant treatment. In terms of postoperative stay, 52 patients
(1%) were discharged on the same day, 886 (20%) had a stay
of 1 d, 998 (26%) had a stay of 2 d, and 2482 (56%) had a stay
of �3 d. The distribution of Clavien-Dindo complications
was as follows: 311 patients (7%) had grade I, 343 (8%)
had grade II, 93 (2%) had grade IIIa, 63 (1%) had grade IIIb,
13 (0.3%) had grade IVa, and seven (0.2%) had grade V com-
plications. Details of outcomes in the training and test data
sets are provided in the Supplementary material.

A data dashboard is included in the online application.

3.2. Model selection and use

Supplementary Table 2 details the top 19 variables (by
mean variable importance) following initial model building.
Prognostic accuracy data for the final models following
internal and temporal validation are provided in the Sup-
plementary material.

The models performing best for prediction of ITU/HDU
admission, postoperative infection, postoperative transfu-
sion, visceral injury, postoperative complications, adju-
vant treatment, and stone-free status at follow-up
(clinician-defined) were used online (Figs. 1 and 2 and
poral validation and (B) after internal validation. HDU = high-dependency

https://endourology.shinyapps.io/PCNL_Demographics/
https://github.com/rg2u17/PCNL_all_outcomes


Table 1 – Prognostic accuracy statistics based on the test set for the final model for each outcome

Outcome Final
model
selected

Training set
(outcomes/
total)

Validation
set

Test set
(outcomes/
total)

Accuracy, %
(95% CI)

SSY SPY PPV NPV AUC
(95% CI)

Postoperative infection XGBOI 6625/13 227 Internal 119/1295 73.0
(70.5–75.4)

0.73 0.73 0.97 0.20 0.82
(0.78–0.86)

Temporal 48/696 70.1
(66.6–73.5)

0.73 0.38 0.94 0.09 0.59
(0.51–0.67)

Blood transfusion XGBOI 7416/14 896 Internal 20/1314 98.4
(97.6–99.0)

0.99 0.75 1.00 0.55 0.88
(0.77–0.99)

Temporal 6/710 91.4
(89.1–93.4)

0.92 0.00 0.99 0.00 0.70
(0.50–0.90)

ITU/HDU admission XGBOI 6623/13 268 Internal 71/1231 96.0
(94.8–97.0)

0.97 0.78 0.99 0.66 0.94
(0.90–0.97)

Temporal 38/635 84.3
(81.2–87.0)

0.87 0.47 0.96 0.18 0.74
(0.66–0.82)

Visceral injury XGBOI 7773/15 508 Internal 3/1352 99.9
(99.6–100.0)

1.00 0.67 1.00 1.00 0.82
(0.47–1)

Temporal 2/727 99.7
(99.0–99.9)

1.00 0.00 0.99 0.00 0.83
(0.76–0.89)

Postoperative complication XGBOI 6573/13 124 Internal 156/1308 86.0
(84.0–87.8)

0.88 0.71 0.86 0.44 0.85
(0.81–0.89)

Temporal 33/711 80.9
(77.8–83.7)

0.83 0.30 0.96 0.08 0.64
(0.54–0.74)

Stone-free at follow-up XGBOI 1250/2509 Internal 171/242 85.1
(80.0–89.4)

0.77 0.88 0.73 0.90 0.91
(0.87–0.95)

Temporal 65/95 65.3
(54.8–74.7)

0.40 0.77 0.44 0.74 0.65
(0.53–0.76)

Need for adjuvant treatment XGBOI 1473/2927 Internal 32/214 93.9
(90.1–96.6)

0.97 0.74 0.96 0.81 0.93
(0.88–0.98)

Temporal 15/98 73.5
(63.6–81.9)

0.80 0.40 0.88 0.26 0.67
(0.51–0.82)

AUC = area under the receiver operating characteristic curve; CI = confidence interval; HDU = high-dependency unit; ITU = intensive therapy unit; NPV =
negative predictive value; PPV = positive predictive value; SPY = specificity; SSY = sensitivity; XGBOI = extreme gradient boosting model, oversampled and
imputed.

Adjuvant treatment

ITU/HDU admission
Postoperative complications
Stone-free at follow-up

Visceral injury

Fig. 3 – Calibration curves for the final models. HDU = high-dependency unit; ITU = intensive therapy unit.
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Table 1). Stone-free status at follow-up was chosen
because of the clinical importance of this metric over
immediate clearance on fluoroscopy or clearance on
inpatient postoperative imaging. Calibration plots are
presented in Figure 3.
3.3. Application

The application is available online at https://endourology.
shinyapps.io/PCNL_Demographics/ and is split into four
tabs: a Disclaimer (which includes the key), Demographics,

https://endourology.shinyapps.io/PCNL_Demographics/
https://endourology.shinyapps.io/PCNL_Demographics/
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ML Predictions, and ML Explanations. The Demographics
tab allows users to input parameters (age group, gender,
Charlson score, and Guy’s stone score). This substratifies
the data set and generates a table that displays a percentage
probability for each outcome according to the input param-
eters, along with the numerator and denominator for each
calculation and the overall percentage for each outcome
based on the total data set.

The ML Predictions and ML Explanations tabs are inter-
linked. TheML Predictions tab again allows for input param-
eters (age, Charlson score, preoperative haemoglobin, Guy’s
stone score, stone location, size of outer sheath, preoperative
midstream urine result, primary puncture site, preoperative
DMSA scan, stone size, and image guidance). These factors
are fed through each model to generate a single summary
table detailing each prediction. This table displays a pre-
dicted likelihood as a percentage along with whether the
outcome is likely or unlikely (>50% or <50% likelihood).

Within the ML Explanations tab, each model has a sepa-
rate tab, with an explainer displaying the Shapley weights
for each variable. This details and ranks by weight the vari-
ables the model is using to predict a particular outcome
(Supplementary Fig. 1).
4. Discussion

This is the largest ML study in PCNL to date in terms of the
size of the data set and the number of predicted outcomes
(n = 7), along with temporal validation. Wewere able to gen-
erate an interactive application for data exploration, predic-
tions, and explanatory graphs. The application can be used
by clinicians as a decision aid. The models achieved at least
moderate accuracy and, for themost part, are well calibrated.

Our study has several limitations, the main one being the
heterogeneity of the data set. The BAUS PCNL audit relied on
a large number of clinicians entering small amounts of data.
This opens the possibility of bias, especially in the reporting
of delayed outcomes such as stone-free status. This was
reflected in the amount of missing data, which may lead
to selection bias. However, it is difficult to generate large
data sets of sufficient scale for ML for surgical disciplines.
Trial data, the most rigorous and selective data type, are dif-
ficult and expensive to scale. Real-world data captured from
electronic health records, although much larger in scale, are
more variable in their accuracy [30] and therefore the valid-
ity is questionable. Audit data lie somewhere between the
two, and probably represent the best compromise in terms
of data validity and the size of the data set.

The rarity of some outcomes such as visceral injury is
another limitation that leads to poorer prediction and cali-
bration of these particular outcomes, despite attempts to deal
with this data imbalance (via oversampling and imputation)
[31,32], which may lead to overfitting. Addition of imaging
data may increase the prediction capability for visceral or
vascular injury [33]. Replacement of Guy’s stone score [13]
with imaging data (eg, CT scans) would probably improve
themodel performance. Imaging datawould capture not only
stone complexity (eg, density) but also anatomic complexity
(eg, stone location, anatomic variation) [34], which are well-
documented factors limiting stone clearance.
The outcome of postoperative complications was also
less well calibrated. This is probably because of its status
as an aggregate rather than a specific, outcome. However,
the model performance on temporal validation was reason-
able; external validation is required to check for overfitting.

Stone-free status was poorly defined and relied on clini-
cian definitions. The gold standard for ascertainment of
stone-free status is CT imaging [35]. In the UK, patients
are often followed up with ultrasound or X-ray scans, which
overestimate stone-free status [36]. The definition of stone-
free status is also unclear. Historically, fragments of <4 mm
or <2 mm were deemed acceptable and included in the def-
inition of stone-free status. However, this has been chal-
lenged, as residual fragments can become clinically
significant [37] and therefore stone-free status has been
redefined as ‘‘no fragments’’ [2]. This ambiguity about
stone-free status in terms of ascertainment and the defini-
tion used may explain why this particular model performs
less well on temporal validation.

Owing to the nature of the data collected (size only
rather than multidimensional measures of stone burden)
we were unable to conduct comparisons to other nomo-
grams for predicting PCNL outcomes, such as CROES [38]
(stone-free status) and STONE [39] (stone-free status and
perioperative complications). However, previous studies
with smaller data sets have shown the superiority of ML
models over these nomograms [6,40].

Future studies should compare the outcomes of our tool
to existing nomograms and externally validate the models.
Studies aimed at building ML tools for prediction of PCNL
outcomes are likely to benefit from the inclusion of imaging
data. Integration of other treatment modalities (eg, uretero-
scopy) in the online application will enhance its decision aid
abilities.
5. Conclusions

This ML study provides the first decision aid tool for seven
different PCNL outcomes (https://endourology.shinyapps.
io/PCNL_Demographics/). The models are well calibrated
with at least moderate accuracy on temporal validation.
As the models are temporally valid, they can be used in clin-
ical practice, although further external validation work is
needed.
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